Combining Data Mining and Machine Learning for Eeective User Prooling

نویسندگان

  • Tom Fawcett
  • Foster Provost
چکیده

This paper describes the automatic design of methods for detecting fraudulent behavior. Much of the design is accomplished using a series of machine learning methods. In particular, we combine data mining and constructive induction with more standard machine learning techniques to design methods for detecting fraudulent usage of cellular telephones based on pro-ling customer behavior. Speciically, we use a rule-learning program to uncover indicators of fraudulent behavior from a large database of cellular calls. These indicators are used to create proolers, which then serve as features to a system that combines evidence from multiple proolers to generate high-conndence alarms. Experiments indicate that this automatic approach performs nearly as well as the best hand-tuned methods for detecting fraud.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

Inventing Discovery Tools: Combining Information Visualization with Data Mining

The growing use of information visualization tools and data mining algorithms stems from two separate lines of research. Information visualization researchers believe in the importance of giving users an overview and insight into the data distributions, while data mining researchers believe that statistical algorithms and machine learning can be relied on to find the interesting patterns. This ...

متن کامل

A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...

متن کامل

Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques

Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996